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We give a complete description of the scaling behavior of the integrated density 
of states of random harmonic chains with random masses near the band edge 
co~a, and near special frequencies r There are four different situations: 
co T co . . . .  o~ + cos, co ]" ~0~ (critical case), co I" cos (general case). Our analytic results 
have the form of infinite sums involving Fourier coefficients of the scaling 
behavior of the Dyson-Schmidt  function at the special frequency or the band 
edge. Binary mass distributions are considered in detail in the limit of a small 
fraction p of light masses. Our predictions are compared with extensive 
numerical data. 
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1. I N T R O D U C T I O N  

The study of random systems requires concepts and techniques that are 
unknown from studies of crystalline matter. Local quantities fluctuate from 
sample to sample, because of lack of translational invariance. Nevertheless, 
one still expects simple scaling laws to occur in the vicinity of continuous 
phase transitions. 

The aim of this paper is to give a detailed analysis of such scaling 
behavior in a simple system. We shall consider the integrated density of 
states (IDS) of random harmonic chains. Our aim is to study frequencies 
around which the IDS is governed by collective behavior. In the ordered 
case, one has a van Hove power-law singularity near the band edge. In 
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random systems, this is replaced by a Lifshitz (exponentially small) 
singularity/1) We shall derive its precise scaling form in Section 3, and 
show that it is modulated by a periodic amplitude. 

Oscillatory critical amplitudes are indeed common in binary random 
one-dimensional systems (2'3) and in systems that allow for an exact renor- 
malization transformation/4) 

Restricting ourselves to binary random harmonic chains in Sections 4 
and 5, we discuss related exponential singularities of the IDS near so-called 
special frequencies. We are able to predict numerically observed structures. 

The very same problem has been studied before. (5) In that paper the 
exponents were derived, and properties of eigenfunctions were discussed. 
Independently the exponents have also been discussed by Endrullis and 
Englisch3 6) In the present paper, we aim to describe a method that yields 
the full scaling behavior. In particular, we obtain a detailed description of 
the structure of the oscillatory amplitude for small values of the concen- 
tration p of light masses. 

Our setup is as follows. Section 2 is devoted to a brief survey of 
notations and of properties of the Schmidt function at a special frequency. 
In Section 3, we examine the Lifshitz singularity of the IDS at the upper 
band edge. The singularities near special frequencies co s are considered in 
Section 4, both for co ~ cos and for co ]' cos in the critical case (M = M,.). The 
most intricate case (co ~" m,; M >  Me) is the subject of Section 5. Section 6 
presents a short discussion. 

2. BASIC DEFINIT IONS.  THE S C H M I D T  FUNCTION 

We first consider a binary random harmonic chain of masses rn. = 1 or 
m n = M (M > 1 ), which occur independently with probabilities p and 1 - p, 
respectively. The equation for an eigenfunction with frequency co is 

--mno92an=an+l"4-an 1--2an (2.1) 

We take fixed boundary conditions ao = aL+l =0.  Equation (2.1) can be 
cast in the matrix form 

A n = (  2-m"~~ -1)0 A~-I-=T"~ 1_ (2.2) 

where 

A : l  a"+4 
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is the state vector, and T,~~ is the transfermatrix. It is useful to diagonalize 
the matrix of the light masses T~. The upper bound of the spectrum is 
co--2, which is the largest eigenfrequency of a chain with only light masses. 
We define an angle fl (wavenumber) through 

~o = 2 sin(�89 O~<fl~<Tc (2.3) 

Then the matrices 

V=(2isin fl)_i/2 ( -i~ -e ia-1) 

U l=(2isinfl)~/2{d~\e 'p - - I )  

(2.4) 

diagonalize T~. We give the results for Ti -1 and TMI: 

TII~U-ITllU==( e 0 ifl C iflO) (2.5a) 

z~tI =~ U 1TMIU=Qfl (2.5b) 

where Qp is given by 

1 ( e - '~ -i~, i sin 7 e'/~'] (2.5c) 
- i sin 7 e i~ eifl + ,~, j 

The angle ./is defined by 

tan 7 = ( M -  I ) tan(lfl); 0 ~< 7 < n/2 (2.6) 

One easily verifies the relation 

Qp(r~,)j 1 = Qj~ (2.7) 

The eigenvalue problem can be studied by considering the ratios 
Yn = an + l/a, of the components of the vector A n. The ratio b+/bn of the 
two complex components of the vector B n = U-IAn has unit length, and 
defines an angle <p, by 

e i~~ eiflYn--1 (Yn-.~-an+l~ (2.8) 
e-i f lY,--  1 \ a,, / 

822/48/3-4-3 
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So the real Yn axis is mapped onto the unit circle. The action of the 
matrices (2.5) on ~o, reads 

~o, _ 1 = qon - 2 f i  ( m o d  2re) 

= Re(~o,,) 

where 

In the following, 

if mn= 1 (2.9a) 

if m,, = M (2.9b) 

e iR~(r eiq, ifl-- iV + i sin ? e ifl 

- -  i sin ~ e i~ - i~ q_ el7 + ifl 
(2.10a) 

we shall always use the notation R(cp) for a MSbius trans- 
form like (2.10) related to a 2 x 2 matrix Q, as in (2.5c). We denote the 
M6bius transform attached t o  Q N  by R N. In terms of Re, Eq. (2.7) reads 

Rj~(qo) = R~(qo - 2 ( j -  1)fl) (2.10b) 

The boundary conditions Yo = 0% YL + 1 = 0 are mapped onto 

q~o = 2fl, qoL+ 1 = 0  (2.11) 

In order to study the integrated spectral density, we now briefly derive 
the integral equation of Dyson (7) and Schmidt. (~) According to Eq. (2.1), 
the variable Yn = G +  i/an satisfies the recurrence relation 

Its distribution function 

satisfies 

Y n = 2 - m ~ , c o  2 -  1 / Y n _  1 

Z , ( u )  = Prob{ y~-i < u} 

(2.12) 

(2.13) 

Z , ( u )  = p Z , _  1(2 - co 2 - I /u )  + (1 - p) Zn_ 1(2 - M (.02 - -  1//../) 

- -  O ( - - U )  + Z . ( O )  ( 2 . 1 4 )  

where 0 is the Heaviside step function, defined by O ( x ) =  1 for x > 0 and 0 
for x <-K. 0. The integrated density of s t a t e s  H(r 2) can be related to Z ( u )  at 
given 0~2: for a large but finite chain, H(co 2) is approximately equal to the 
number of changes of sign in the sequence a n (1 4 n  ~< L) divided by L. In 
terms of the ratios Y,, H(~o 2) is just the fraction of negative Yn- One 
therefore has, with probability one (or after averaging over the ensemble), 

H(eo 2) = prob{ Y< 0} = Z(0) (2.15) 
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where we already int roduced the limit Schmidt function Z =  limn ~ ~ Zn. 
Combining (2.14) and (2.15), we find for n --, oo 

Z(u) = pZ(2 -- (1)2 _ _  1///) -'[- (I - -  p) Z(2 -- Me) 2 -- 1/u) -- O(--u) + H(oo 2) 

(2.16) 

This equat ion can also be mapped  onto  the unit circle. The variables q~ 
and u are related by [see Eqs. (2.8), (2.13)] 

e in _ ix e in - -  e i~o - i n 

e ' ~ -  - i ~ ,  u =  (2.17) 
e - -  U 1 - -  e t~~ 

and the quant i ty  

V(~o) - Z(u(cp)) (2.18) 

is a monoton ic  function on [0; 2~] satisfying V(0) = 0, V(2Tc) = 1. It obeys 
the relation 

V ( o ) = p V ( q ~ - 2 f l ) + ( 1 - p )  V(Rn(~o))-I(O<cp<2fl)+H(o) 2) (2.19) 

Here I is the characteristic function of an interval: 

I(qoo < ~o < (pl) = 1, q)o < q~ (mod 2~) < ~ol 
(2.20) 

= 0, elsewhere 

Iterating Eq. (2.19) l times, one has 

l 

V(~o)=pZV(qo-Zlfl)+ ~ ( 1 - p ) p J  1 V(Rj~((p)) 
j = l  

/ 

- ~, p J - ' I ( - - Z f l < ~ o - 2 j f l < O ) + ( 1 - p t ) H ( ~ o 2 ) / ( 1 - p )  (2.21) 
j =  1 

At the special frequency one will have fl = ( l - k )~ / l .  Then this equat ion 
reduces to 

l l 

V(q~)= ~ r s V ( R j ~ ( t o ) ) - ( 1 - p )  -~ ~ r J ( - 2 f l <  q ) -  2jfl<O) 
j = l  j = l  

+ (1 - p ) - I  H(~o2) (2.22) 

where 

r j = ( 1 - - p ) p  j 1/(1 -- p~), j =  1,..., / (2.23) 
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The fixed points of R~(~0) for arbitrary c5 are given by 

t) ++_(,5) = 6 +_ v(6) (2.24a) 

where 0 < v(6) < ~ is defined by 

cos v(~) = sin(7 + 6)/sin 7 (2.24b) 

and satisfies 0 < v(6) < c~ if 0 < ~ < re. The fixed point will be real if and only 
if ]sin(7 + 6)[ ~< sin y. 

3. THE LIFSHITZ S I N G U L A R I T Y  NEAR THE B A N D  EDGE 

We first consider binary chains. Let co be given by 

co = 2 sin(�89 f l = ~ - e  (3.1) 

In order to find an eigenfrequency near co = 2 (fl = rr), one needs a segment 
in the chain with a large number of consecutive light masses. Hence we 
assume that there are N such light masses, on (relabeled) sites j = 1,..., N, 
and that there are heavy masses at sites j = 0  and j = N +  1. The 
probability to find such a succession is 

(1 __p)2pN 

which is exponentially small in N. As soon as N has been related to the 
frequency variable e, we will obtain an exponentially small behavior in 
frequency. 

In order to do so, boundary conditions have to be specified. The main 
point of our method will be to first fix boundary conditions and solve the 
highest eigenfrequency of the island of N light masses and then finally 
average over the boundary conditions. Hence we set 

ao=cLal, aN+I=CRaN (3.2) 

where CL and cR are fixed real numbers. The highest excitation of the island 
has the amplitude 

an = Ae i~n + B e -  ~" (3.3) 

Fixing A and B according to Eq. (3.2), one finds for large N 

= ~z{N- l + (1 + CL) -1 -~- (1 -~ CR) -1 } --1 
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or, equivalently, for small e 

N =  rt - .-------co cR + O(e) (3.4) 1 
+ l + c L  + 1 + CR 

Let us denote by Wa(eL; ~) the integrated probability to find the 
boundary condition Co. Obviously it is governed by the semi-infinite part 
of the chain to the left of zero.  But in Section 2 we introduced the Dyson-  
Schmidt function Z(u, 0) 2) just as the distribution function of the ratio of 
two successive amplitudes on the right end of a semi-infinite chain. The 
function W,q differs from it in the sense that there is an extra heavy mass at 
site 0: 

WH(cc) = Z(2 - M 0 )  2 - 1/CL) -- O(--CL) + const 

Using the Dyson-Schmidt equation (2.16), we can write this as 

WH(CL) = (l -- p) -~ {Z(cc) -- pZ(2 - 0)2 __ 1~eL) + pO( --co)} + const (3.5) 

Finally, by symmetry, cR is governed by the semi-infinite part of the chain 
to the right of n = N +  l, and brings the same distribution. 

Now that we have discussed all individual probabilities, the integrated 
density of states can be constructed. Given the values of e, CL, and oR, we 
define N by Eq. (3.4). It is no longer an integer; we denote its integer part 
by I-N]. To leading order in p'~/', only segments with [N] + l, [N] + 2, 
[N] +3  ..... will produce an eigenmode with frequency between 092= 
2 + 2 c o s e  and 0)2=4. Hence, to leading order, the increase of the 
integrated density of states is given by 

1 -  H(0)2)= f dWH(cr) f dWH(cR) ~. ( 1 -  p)2 p[N]+j (3.6) 
j = l  

The following relation will often be employed, for real values of N 

U 1-- p @ --1 (pe2"i") ~v (3.7) 
P[ ] . . . . . .  L, p . . . .  in p + 2rein 

It can be verified easily by equating the Fourier coefficients of the periodic 
function p[N] N. Performing the sum in Eq. (3.6) and inserting Eqs. (3.7) 
and (3.4), we then derive 

oo 
1 __ H ( 0 ) 2 )  = (1 - p ) 2  ~ 2 2ninrc/g 

p . . . .  In p+2rcin Q~.(pe ) (3.8a) 

~--1)rc/e'Ql(~) ( 3 . 8 b )  
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So we have deduced that 1 -  H((o 2) indeed is exponentially small in fre- 
quency, in agreement with the original work of Lifshitz. Moreover, one sees 
that it has a periodic amplitude Q~(rc/e). The function Q~ has coefficients 

Ql,n =- f dWn(c;  e)(Pe2=~") -c(~ +C~ 

= f d W u (  - 1  + 1/v; g)(pe2=i~) 1 -~ 

(3.9) 

which weakly depend on e. Since we are only interested in the asymptotic 
behavior, we set e = 0  in Eq. (3.9) and denote Z(u, m2--4) by Zs(u). In 
Ref. 5 it was discussed that Z , ( - l + l / v )  vanishes for v < 0  and equals 
unity for 0 < v < v _  _--1{1 - M + (Ma - M )  1/2 } 1. Hence, for v > v + ==- 1 + 
[ 4 ( M -  1)]-1, Eq. (2.7) reduces to 

Z ~ ( - I  -/- I /v )=  p Z , ( - 1  q- 1 / ( v -  1)) (3.10) 

and has the solution 

Z , , . ( - l + l / v ) = p ~ ' P , ( v ) ,  v~> { 4 ( M -  1)} ~ (3.11) 

where P~ is a periodic function with unit period. It can be expanded in a 
Fourier series as 

P, ( v ) - -  1 - p  ~ - 1  n 2=in~ (3.12) 
p . . . .  In p + 2ztin r l , , e  

The function P1 and its coefficients Pl,n are determined by the Dyson-  
Schmidt equation for Zs. An iterative solution for small values of p will be 
discussed later [see below (3.16)]. 

Combining Eqs. (3.9) and (3.5), we find 

Q 1 , , 7  

f ,  
= (1 - p ) - '  j d { Z s ( - 1  Jr 1 / v ) - p Z s ( - 1  + 1~(v-  1)) }(pe2~~ 1 /3 

(3.13) 

= (1 - p) l dZ,(  - 1  + 1/v)(pe2~") 1 -~ 
+ 1 

Inserting Eqs. (3.11) and (3.12), we discover the remarkable result 

QI,n= PI,~ (3.14) 

Equations (3.14) and (3.8) constitute our final result. They express that, if 
(the scaling behavior of) the Schmidt .function at the band edge has been 
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determinded, the scaling behavior of  the integrated density of states near the 
band edge is also known. 

We have defined Ql,n and Pl,n in such a way that PI,, = Ql,n = 1 in the 
limit M ~  oo. Indeed, one verifies by explicit calculation from the exact 
solution derived by Domb et al .(9) 

Z s ( - l + l / v ) = p  ~3, v > 0  
(3.15) 

=0,  v < 0  

1 - H ( c g z ) = ( 1 - p ) p  E€ e l0 ;  M = o o  (3.16) 

The second result was given, for instance, in Ref. 3. Comparing with 
Eq. (3.8), one sees that Ql(x)= (1 - p ) p l X 3 - x  in this limiting situation. 

A slightly different behavior is present for small values of p. In our 
numerical work we always found that, for small p, the function 
Z~(-  1 + 1/v) is close to making one step per period. (It is not a discon- 
tinuous function for finite p, but the smaller the value of p, the more it 
looks like it; see Section 6). The positions of these "steps" are determined 
by heavy masses only, as can be seen from the following argument, which 
was discovered numerically in a related model. ~2) One starts with the 
solution for p = 0: 

Zs( -1  + 1/v)=O(v-~(1 - f - v ) ) ,  p = 0  (3.17) 

where 

= �89 - ( M / ( M -  1)) 1/2 } (3.18) 

is negative. Substituting this in the second term of the right-hand side of 
Eq. (2,7) and iterating, one obtains 

z~(-1 + 1/v)= (1 -p )  ~ p~O(v-'(k+ 1 -~ -v ) )  
k = 0  

=pEr+v3, v ~  --~ 

=0,  v<  - f  (3.19) 

A better approximation can be obtained by repeating this procedure. Steps 
will be reduced by at least another factor (1 - p ) .  We will not elaborate on 
this, however. Instead, we investigate the consequences of Eq. (3.19). Using 
Eq. (3.7), we can compare with Eq. (3.12) and find 

QI,, = (Pe2~in) ~, p ~ 0 (3.20) 
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Inserting this into (3.8) and using (3.7) again, we find 

1 -H(o~Z)=(1-p)p E~/~+2~, p--*O (3.21) 

with ~ given in (3.18). Hence, if Z,  is close to making one step per period, 
so is H(c02). The prediction 2f for the shift in (3.21) as compared to (3.t6) 
has been verified numerically for systems with a small value of p, e.g., 
p = 10 -1. We had to restrict ourselves to such values to have a clearly 
visible scaling region. 

Subdominant structures in Z ,  will show up as smaller "steps." Due to 
the quadratic behavior in (3.8), they will cause more "small steps" in 
H(~o2). We shall consider an analogous behavior in Section 4.2, where the 
same "proliferation mechanism" explains the dominant behavior of H(o)2). 

We already reported the result (3.8), (3) with another relation to the 
Schmidt function, which was conjectured to take the value given in (3.17). 
However, if we insert the present prediction (3.19) for the Schmidt function 
into Eq. (5.15) of Ref. 3, we immediately recover Eq. (3.21)! This explains 
why we could observe good agreement with numerical results in the small-p 
region. 

Finally we note that Eq. (3.8) is valid for more general mass dis- 
tributions. In fact, it holds whenever the lightest mass rn = 1 occurs with 
nonzero probability p, the heavier masses having any distribution RH(m). 
Then Eq. (3.11) will again hold, with M denoting the one-but-lightest mass. 
And, if there is no mass gap at r e = l ,  one has M = I ,  v + = o %  and 
Eq. (3.11) will only be valid in the limit v ~ oo. Nevertheless, Eq. (3.8) still 
holds. 

We discuss elsewhere (1~ an example of such a situation, where an 
exact solution is available. (11'12) Equation (3.8) and its generalization 
for the two-point Green's function can then be derived in an independent 
manner. Moreover, coefficients like Qx.n can be found by solving second- 
order differential equations. 

4. L IFSHITZ  S I N G U L A R I T I E S  NEAR SPECIAL  F R E Q U E N C I E S  

Although the spectrum of a harmonic chain with random masses has 
no gaps, a behavior similar to that near the band edge also occur inside the 
spectrum. A frequency where this happens is called a "special frequency." 
The condition for occurrence of a special frequency is that there is a large 
enough gap in the mass distribution at m =  1. If we denote the one-but- 
lightest mass by M and if 

co = 2 sin(�89 fl=-fls=n(l-k)/l (4.1) 
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with l < ~ k < l  integers and mutual prime, then ~o--co~ is a "special 
frequency" if M satisfies 

M>~ M,.(k, l)= 1 + tan(krc/2l) cotan(rc/2/) (4.2) 

In such a situation ~o = a)s is not an eigenfrequency of any chain in the 
ensemble. (~3'14) The very same situation exists near the band edge. Hence 
also in the present case one expects essential singularities: again a large 
succession of a certain small sequence of light and heavy masses is needed 
for having an eigenmode with ~o close to co s. 

A lengthy discussion of properties of binary chains for frequencies near 
special frequencies was given recently. (5) We refer the reader to that paper 
for more details. Here we aim to give a more accurate description of the 
behavior of H(~o 2) for ~o ~ o)s. It was already noted in Ref. 5 that one has 
to distinguish three cases: co,,co s (Section4.1); ~oTa)s, M = M  c (Sec- 
tion 4.2), col'cos, M > M c  (Section 5). Here we recall that at the special 
frequency 

1 - - 1  

H(~Os2) = ~ rf(n) (4.3) 

where f (n)  is defined by f (n ) .  ( l -  k) = n(mod l). This result is independent 
of M >>, Mc(k, l). 

As in Section 3, we shall restrict ourselves for simplicity to binary 
distributions. Our results expressing H(o) 2) as an infinite sum involving the 
squares of amplitudes of the scaling behavior of the Schmidt function will 
be valid in the general case if the conditions (4.1), (4.2) are satisfied. 

4.1. To the  Right  of  a Special  F requency  

In this section, the role of the light mass in Section 3 is played by a 
succession of one heavy and l -  1 light masses, denoted by l iLt -  1.(5,6) We 
mean that the M6bius transformation Qlp [cf. Eq. (2.7)], which is 
parabolic at ~Os, becomes elliptic when 

~ = 2 sin(�89 f l=/~s+e,  e > 0  (4.4) 

Then, for ~p close to zero, and going from site n to site n + 1, the phase is 
transformed by Qtpl: 

HLt-~: ~o--*R~(q~)=~o+tanT~o2+21e+O(q93) (4.5a) 
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On the other hand,  also the t ransformat ion  connected to light masses is 
elliptic. One  has of course 

Lt: ~o --* ~o + 215 (4.5b) 

We conclude that  the central par t  of the chain may  consist of an arbi t rary  
sequence of successions of FILl-  l and L(  Al though U is close to the iden- 
tity for I~ol ~- x/~,  there is not  much  difference between H U -  ~ and L t for ~o 
close to zero. Since we have not  been able to solve this full problem,  we 
restrict ourselves to small values of p. Then  the probabi l i ty  

q , = ( 1 - p ) p  ~ ' (4.6) 

for finding H U  ~ is much  larger than the probabi l i ty  pZ for finding U. 
Consequent ly,  the central  par t  of the chain will only contain  successions of 
H L  t-  l 

For  reasons of symmet ry  we consider the eigenfrequencies of an island 
( l iL t  ~)NH, which has (relabeled) site indices i =  1, 2,.., N l +  1, The boun-  
dary condit ions ao=Cca~,  aNI+2=CRaN/+I determine phases ~o L and q)R 
through Eq. (2.8). The  phase q~N~+l is also defined by (2.8) and related to 
(PR as 

PNl+ 1 = 2/3 - q)R (4.7) 

The difference between these two phases is that  q)m+~ is "read off from the 
left" and OR "f rom the right." Wri t ing ( H L I - 1 ) N H =  ( l iL t  I)N+~LI-~, we 
can relate (Pc to q~R, using the definitions of Section 2, 

q)L = R~  + 1( 2l~ - ~0R) (4.8a) 

This is compac t  no ta t ion  of 

e i'PL = {sin/~ cos ~ cos(N/~ + #)e  2il~- i~R 

+ i sin(N/~ +/~)( - sin(7 + Ie) e 2'r~ - ,~oR + sin 7e i/~) } 

x {sin ~t cos 7 cos(N# + ~t) 

+ i s i n ( N g + 1 2 ) ( - s i n T e  i~': i~R + sin(7 + /e ) )}  -1 (4.8b) 

Here  the pa ramete r /~  is defined by (5) 

cos/~ = cos(7 + /e ) / cos  ~, 0 ~< # ~< rc (4.9) 

For  small e one finds # -~ (21~ tan 7) 1/2. 
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The length N for which (4.8) has a solution at given values of ~0L, q~R, 
and e can be obtained for small e: 

N =  zc/p - 1 + d + O(#) (4.10) 

with 

d = �89 cotan ? (cotan �89 + cotan �89 (4.11 ) 

Whenever N is an integer, an eigenfrequency will be present. Because 
chains with length [N]  + j  ( j =  1, 2,...) have an eigenmode with frequency 
between cos and co, we can already write down the equivalent of Eq. (3,6): 

H(co2)_H(co2)= ~ f dWH(~oL)dWu(q)R)( 1 _p)q~N]+./ (4.12) 
/ - I  

Here the integrals with respect to W again perform the average over the 
boundary conditions. Following the ideas of Section 3, we find 

W~(~oL) = V(R~(~oD) + const 

= (1 - p ) - ' {  V(q)L) - q~ V(Rtp(qoL)} 
l--1 

- ( l - p )  ' ~ qjV(Rj , (~oL))-yV(~oc-2le)+const  (4.13) 
/~2  

where we made use of Eq. (2.15). 
Inserting Eq. (3.7) into Eq. (4.12), we obtain the final result, valid for 

general mass distributions, for which co~ is a special frequency 

H ( o )  2) - -  H ( o )  2) = (q,)~/u Q2(7c/12), co + co s (4.14a) 

where 

1 ~ 1 n2 ~2~i._~ (4.14b) 
Q2(x) = (1 - p ) q ~  ~- ~ In q,+ 2~rin ~2,,~ 

The coefficients Q2,n have been defined as 

Q2,n = (1 - p) f (q,e2=i") (~176 ~ cot,n ~)/2 dWH(~O ) (4.15) 

and will again be approximated by their value at e = 0. For  (PL close to 27r, 
the sum in (4.13) involves the function V for values of argument between 0 
and ~o+(afl), where it vanishes for ~=0.  We shall also omit the term 
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proportional to p~ from (4.13). So only the first two terms remain. In Ref. 5 
it was discussed that V(~0, e = 0) ~ V,(~p) has the scaling behavior 

1 - V , ( 2 ~  - (p)  = (rl) x P=(x) ,  

This is valid for 

x = �89 cotan(�89 cotan 7s 

(0 < cp < q) + ) (4.16) 

Moreover, 

x/> x_  =- �89 cotan{~ - �89 _ 1//)(0)} cotan "/s 

rt = ql(1 _ p/) , = (1 - p) p/-1(1 - p t ) - i  (4.17) 

The function P2 has the following Fourier series: 

- 1  
P2(X)  = In r t + 2rcin P2,n d2xinx 

n =  o(3 

(4.18) 

Combining (4.15) with (4.16) and (4.18), we find 

f~-  +' (ql e2~") -~ d{r7 P2(x)} = Pz ,  Q 2 . 1 l  ~ "r (4.19) 

where we used that r~ --- q~ in our approximation pl ~ 1. In fact, the form of 
(4.19) suggests that for arbitrary p indeed rt instead of q~ should enter 
Eq. (4.14). Therefore, it is tempting to think that the solution for finite p is 
obtained by making (only) this replacement in (4.14). It would be 
interesting to have a direct proof of this point. 

Equations (4.14) and (4,19) constitute our result for co$co,. Again 
there is an essential singularity, multiplied by a periodic amplitude. It has 
been derived for binary distributions, but is valid in general. 

Restricting ourselves again to the binary case, we can make more con- 
crete predictions by studying the coefficients Q2,n = P2.n. First of all, in the 
case M = ~ ,  one picks up the weight of the modes with frequency COs, ~ 

H ( C O 2 s + O ) - H ( e o ~ ) = ( 1 - p ) r ~ = ( 1 - p ) 2 p ~ - l ( l - p t )  -~, M-=oo 

(4.20) 

It cannot be obtained from our previous approach because of the 
interchange of the limits M ~ oo and e --+ 0. 

More interesting is the behavior for finite M and small p. As in the 
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preceding section, we can provide an iterative solution starting from the 
value for p = 0: 

V s ( q , )  = o(~o - r + ( L ) )  (4.21) 

where O+(fls) is defined by (2.24). Equation (4.21) states that for p = 0  
there is only one chain in the ensemble. It has only heavy masses and 
produces a phase ~,+(fi,). In order to find the low-p behavior, we insert 
(4.21) into all terms in the rhs of Eq. (2.22), except for the term with 
R~(rp) = Ro(gO ). To leading order in p, this equation then takes the form 

vs(~o) = r, V(Ro(~O)) + r, 0(~o - ~ + ( L ) )  (4.22) 

It has the solution 

1 -- V~(qo) = r~ ~ riO(q9 - RoJ( t~  +(fi~)) 
j -  0 

where it can be checked that 

(4.23) 

�89 cotan RU{ ~ + (/~,.) } cotan 7., 

= - j +  �89 cotan 0 +(fl,) cotan ~,~ 

Hence the sum can be carried out and one finds, for q~,L 0, 

(4.24) 

1 - V~(2zr - (p) = l r _ ~  rz r~ x+ 1 + [co t an (~ '+  fl, /21 co tan  "/,]/2] (4.25) 

with x defined in (4.6). Hence, in this first approximation, V s indeed has 
the expected scaling behavior and makes one step per period. Using 
Eq. (3.7), one can read off the coefficients P2,~ defined in (4.18). Inserting 
the result into (4.14) and performing the sum, we end up with 

H(o)2) _ H(co2 ) _ 1 - p ,~f~/, + cotan(C, 7(fl.,)/2)cotan 7.,] 

- 1 - q---~ ~ 
(4.26) 

As in Section 3, one finds that the shift in the expression for H(o)  2) is twice 
as large as the one in V,. We have verified this leading small-p behavior 
numerically, and indeed found the correct shifts in Vs and H(o)2) .  

In Fig. 1, we present a plot of numerical data for A H =  H(co 2) -- H(co 2) 
in a typical case. The data plotted in al! the figures of the present paper 
have been obtained by an exact enumeration of mass configuration of finite 
systems of length N~< 18 ( N =  18 has 218~2 x 105 configurations). This 
very efficient method has already been describedJ 2'3'5) 
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Fig. 1. 
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Plot of In AH/ln ql (where AH is the IDS difference) versus the variable n/# of 
Eq. (4.9), for e)25co~ and k = l ,  l = 4 ,  M = 1 0 ,  p=0 .1 .  

4.2. To the Left of a Special Frequency: Critical Mass Ratio 

This situation is very close to (but more interesting than) the behavior 
to the right of a special frequency, discussed in the previous section. Also, 
in the present case, there is a transformation, which is parabolic at the 
special frequency and becomes the leading elliptic one away from co,. It is 
connected to a succession of one heavy mass and a -  1 light masses, where 
the integer a is defined by 

( l - k ) a = l  (mod/) ,  l < ~ a < ~ l - 1  (4.27) 

An extensive discussion of this point is given in Ref. 5. Here we first repeat 
the argument of Section 4.1, which leads to a more complete description of 
the phenomenon: 

co = 2 sin(�89 fl =/~s - e (4.28) 

and introduce the variable # by 

cos # = ( - 1  )" cos(7 + afi)/cos y (4.29) 

Here q = 0 or I, in such a way that # -+ 0 when e --+ 0. Hence # is of order 
. , /7 for small e; see Ref. 5 for the prefactor. As in Section 4.1, we take p 
small ( p t ~  1) and arrive at a result analogous to (4.14): 

H( co~ ) - H(  co ~) = ( qa) ~/u Q3(~/#) (4.30a) 
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with 

and 

1 ~ - -  1 p 2  e2~Zinx 
Q3(x) = (1 - p)q . . . . .  In q~ + 2rein 3,~ (4.30b) 

q , = ( 1 - p ) p  ~-~ (4.31) 

As before, the coefficients P3,n c o m e  from the scaling behavior of the 
Schmidt function at 6o s to the right of the fixed point 7r/l of the relevant 
parabolic transformtion, 

V,(rc/l + 0) = (G) x P 3 ( x ) ;  x = �89 cotan(�89 cotan ?,, (4.32) 

where 7, = �89 - 1/l) is the value in the critical case and P3 is periodic with 
the expansion 

where 

- 1  
P3(x) = _ oo In r a + 27r& P3,n e2~inx (4.33) 

r , = G ( 1 - p ' )  l= (1 - -p )  pa-1(1--p')-1 (4.34) 

The result (4.30), (4.33) is also valid for more general mass distributions. In 
the binary case we can apply the ideas of the previous sections and obtain 
by iteration of the Schmidt equation (2.22) a result valid for small p: 

(v ) V s +0 = l _ r a j =  1 
j C a  

(4.35a) 

where 

XJ = �89 cotan{�89 +(fis) + ( J -  1)fl~- To~21} cotan ?c 

From this one derives, using Eq. (3.7), 

1 

P3 n --= ~ 2rein --x' , Fj(rae ) J 

j = l  
jC~a 

(4.35b) 

(4.36) 

We first assume that ai>2. Then to leading order in p only the terms 
1 <~j<~a- 1 are important, because for these terms rfra=pJ-a>> 1. In 
other words, only the steps in (4.35) with 1 ~<j~< a -  1 are leading for p $ 0. 
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In fact we find a -  1 essentially equal steps of strength 1/(a-  1) per period 
in the quantity In Vs(~o + ~/2l)/ln r a. Thus, for a = 2 there is essentially one 
step per period and we are back in the situation of Section 4.1. 

More interesting is the situation where a~> 3. In Fig. 2 we present 
numerical data for the case a = 3, where two "steps" are observed per 
period. To a high accuracy they are equal to 1/2 and complete agreement 
with Eq. (4.35) is found. 

Because Eq. (4.30) is quadratic in P3,n, the two leading terms from 
(4.36) for the case a = 3 produce three terms in (4.30). Hence, we predict 
for this case three leading "steps" per period in H(o)Z). Performing some 
algebra, we deduce the following "steps" for the case x~ < x2: 

A ln[H(o)~) - H(co2)] 

In  r 3 

l 

In y3 

1 

In r 3 

1 

In r3 

r3r~ +__22r_lr~:_+r~ 1 In 2 
- - - I n  r~+2rlr2+r ~ ~ 4  21np 

r3(r~+2rlr2)+r 2 1 
- - - I n  rgr~ + 2rlr2+r ~ 

___ lnr3 ( r~+2r l rR+r~)  ~ ln2 
r3(r~+2rlr2)+r~ 21n p 

(4.37) 

at the points rc//~ = 2xl, x~ + x=, 2x 2 (mod 1), respectively. We note that the 
steps in (4.37) sum to unity, as they should. In Fig. 3 we present numerical 
data, which fully confirm the behavior predicted by (4.37). 

Fig. 2. 
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Plot of In Vd'ln r, (where V, is the Schmidt function) versus the variable x of 
Eq. (4.32) for k = 2 ,  l=7, ( a =  3), p = 0 . 1 ,  and M =  M~ = 3.110. 
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Fig. 3. 
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Plot of In AH/In % (where AH is the IDS difference) versus the variable z//~ of 
Eq. (4.29), for co2T~o~, in the same model as Fig. 2. 

F ina l ly  there remains  the case a = 1, which occurs when k = l -  1. It is 
a "very special" frequency, because  the i m p o r t a n t  succession H L  u-  1 con- 
sists of one heavy mass  only. This was a l ready  not iced in Ref. 5, where an 
eigenfunct ion with such a behav io r  was presented.  

N o w  the a p p r o x i m a t i o n  (4.35) essential ly makes  one step per  pe r iod  
for small  p, coming  from the leading  j = 2 term. Numer ica l ly  a r icher  struc- 
ture can be observed.  F igure  4 shows the "first" special f requency (c0~ = 2; 
k = 1, l =  2, a = 1). A bet ter  a p p r o x i m a t i o n  is ob ta ined  by i te ra t ing  the 
Schmidt  equa t ion  (2.22) once more.  Here  one subst i tutes  (4.35) in all terms 
of  the r igh t -hand  side of  Eq. (2.22), except  in the term with j = a. One  then 
needs 

X j ( x )  = i co tan  y~. co tan  �89 ~z/l} (4.38) 

where x and  q~ are re la ted  by (4.32). It can be shown that  

Xi (x  ) = - 1 - �89 co tan  7c. {�89 co tan  7,. + x cotan(j /~ - ~/l)}  

x {x - �89 co tan  7 cotan(j /~ - ~/l)}  -" (4.39) 

I te ra t ing  this equat ion ,  one finds 

l 

.1, . / '  = 1 k = k ( j ' )  

. j , j '  # a 

( 1 I . k + 1 + [ x A x  - k )  - - . ~ / ]  - - ro )  i j r ; , r ,  

where 

(4.40) 

k ( j ' )  = [ x  - �89 co tan  7c co tan( j ' f l s  - ~/1)] + 1 

822/48/3-4-4  
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Fig, 4. 
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Same as Fig. 2, for the "first" special frequency (k=l ,  /=2, a= 1, p=0.1, and 
M = M , . = 2 ) .  

In the case k =  1, / = 2  the sum simplifies. Then a =  1, j = j ' = 2 ,  

fls = ~/2, L = ~/4, x 2 = 0, r 2 = 1 - r~. Hence our  second iterate reads 

Vs(q))=r 2 ~ rlk+ [l/(4k 4x)] (4.41) 
k = [ x + l ]  

This is to be compared  with the first iterate V,(~0) = rll + c q from (4.35). The 
values of Vs(q ) )  given by Eq. (4.41) already present the leading sequence of 
structures of Fig. 4. 

Since we could not  obtain reliable numerical data  for H(co2), we shall 
not  work out the implications of the rich structure of Vs(q~). It  is expected 
that H(e) a) has a much richer structure. 

5. TO THE LEFT OF A SPECIAL FREQUENCY: 
GENERAL M A S S  RATIO 

This case has proved to be more  subtle than previous ones. Our  result 
(5.29) is more complicated than an exponential  times a periodic amplitude. 
Nevertheless, we are able to describe numerical data  precisely (see Sec- 
tion 5.2). 

5.1. Relation between H ( w  2) and V,(s 

We again set 

co = 2 sin �89 fl = r e ( l - -  k ) / l  - ~ =- f l ,  - e (5.!) 
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For small enough e, all transformations Rj~ ( j =  1,..., l) connected to 
successions H L  j -  ~ are hyperbolic. The only elliptic one is related to a 
sequence of l light particles (U: ~o -+ q~ + 2113). So, a succession of N l + j +  1 
light masses shifts the phase: 

( p N , + j + l = ( P O + 2 ( N l + j + l ) [ 3 ,  l < ~ j ~ l  (5.2) 

Inserting boundary values ~oL and ~o R by q~o = ~oL and ~ONl+j+l ~ 213-~oR, 
one has 

(Pc + q~R = 2 (N+ j)e --2jfl~ (mod 27z) (5.3) 

In Ref. 5, it was discussed in more heuristic terms that ~o r and q~n should 
be larger than or equal to ~ +(a/~), the fixed point connected to the relevant 
sequence H L  a- l .  Here a (1 ~< a~< I) is defined by a-[3s = ~/l (mod n). The 
fact that at the special frequency the Schmidt function V~(~0) vanishes for 
~o <<. ~+ (afls) means that for e--* 0, phases are always larger that O+(a~,). 
We define 

~5 = aft (mod z~) = n i l -  ae (5.4) 

and introduce the following decomposition: 

~OL,R = ~ +(aft) + OL,R =--- ~/I-- a~ + v(6) + OL,R (5.5) 

where v(6) is defined in (2.24). Next we calculate N from Eq. (5.3). For 
small e, assuming small 0LR and using v ( 6 ) <  6, it is found that by far the 
smallest value is taken if j =  I - a :  

N = (2v + 0L + OR)/2le -- 1, j = l - -  a (5.6) 

Here the argument of v has been omitted. Following the arguments of Sec- 
tions 3 and 4, one finds that only islands HLtEU]+U+t-a+lH contribute to 
the leading behavior of the IDS. Hence, one arrives at 

H(~4)- H(~~ = ~ I dW~,(OL) dW,,(010(1 _ p)2 
i = 1  

• a + l  

Using (3.7), one can write this as 

(5.7) 

__pl-a (ple2nin)v(6)/l~]~(~) (5.8) H(~ H(~2)= ~ ln p-P~ 2~in 
r t  = o o  
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with 

I,(~) = (1 -- p) f dWH(O) (pte2~in)~ (5.9) 

In Eqs. (5.7) and (5.9), Wu(O ) is the integrated probability that the phase 
at the right end of a semi-infinite chain ending with a heavy mass takes the 
value ~0 = ~ + (a/~) + 0: 

wH(0) = v(RA~0)), ~o=-4 ,+(6 )+o  (5.10) 

From Eq. (2.19) it can be deduced that 

WH(O)~- ( l - - p )  1 {g(~o)-plV(@- 2l~) 

' } - ( l - p )  ~ pJ ~v(RjA~o)) (5.11) 
.]~ 2 

Due to the strong 8 dependence in (5.9) we have to solve V(p) for e 
small but finite. We set 

9(0)  = v(~, + (aft) + o) - v(~, + (a~))  (5.12) 

Expanding Eq. (2.21) about 0 = 0 ,  we have 

V(O)=p'P(O+21e)+(1-p)p ~ ll/(c~O)-p'P(2l~) (5.13) 

with 

d 0) ~ 
= 20  R~,~(0 + (a/~) + =0  

_ - s i n  7 sin v(6) + cos(7 + 6) > 1 

sin 7 sin v(6) + cos(7 + 6) 
(5.14) 

Here we have omitted terms of the form V(Rj~(~o)) for j r  a. Because 
we shall only consider (5.13) for - 2 v ( 6 ) <  0 ~ 1 and we will find exponen- 
tial decay for 0/8 ~ - 1 ,  such terms indeed are exponentially small. For the 
same reason it is not important that R~(~0) should only be linearized near 
its fixed point: in the region where the linearization is not allowed, 
V(R~(q~)) is exponentially small anyhow. 

The interesting point is that Eq. (5.13) can be solved exactly, so that a 
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closed expression for I,(a) in Eq. (5.9) can be derived. Formally extending 
its region of validity to the whole real axis, we define 

F(s)= f_Z e .o dV~(O) 

It satisfies the equation 

F(s) = (1 - y ) (1  - pl e2.~s) -1 GF(s/c 0 

(5.15) 

(5.16) 

where r.= (1-p)p" l / (1 -y ) .  The solution is 

F ( s )=  ~, c~(is) -c+ik~ [~ { ( 1 - p / ) ( 1 - p / e  2"~'~-') ~} 
k ~  ~ j ~ O  

(5.17) 

with cuts of powers taken along the negative real axis and 

~" = - i n  G/In ct = - ~log G ; s = 2~/ln c~ (5.18 ) 

The coefficients c~ can once more be determined from the Schmidt 
function V,(~0 = ff + (aft) + 0) at the special frequency. Here one starts from 
the inverse of Eq. (5.15): 

V(O) = f ~176 ~d-~S.(e'S~ (5.19) 
Z, TglS 

and takes 0 positive and e small (e ~ 0 ~ 1). Closing the integral in the 
upper half-plane, one can neglect the e dependence and obtains scaling 
behavior of the form already discussed in Ref. 5: 

vs(~+(a/L) + 0) = ~ -1 P 0 ~ - i ~  0~0 (5.20) 
k= ~ l n G + 2 ~ z i k  4,~ 

where P4,k are related to ck by 

c k = - ( l n  G + 2Mk) - I  F(1 + ~ - ikf2)P4, k (5.21) 

Note that the c~ decay much faster for large k than the P4,k- 
Next we determine I,(e). The integral (5.9) is dominated by values 

0/2l~ ~ -1 .  Evaluating Eq. (5.19) for this situation, we can close the con- 
tour downward and find leading poles from the term with j = 0, 

s = sn = (2ile) -1 an (5.22) 
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where 

= - ln  p~ - 2gin O" n 

Summing the residues, we obtain 

k,n = --co O'n \ G'n / 

x I~I { ( 1 - p ' ) ( 1 - p ~ e x p ( ~  Jcr,)) l} 
j =  1 

Indeed, it decays exponentially in the following way: 

V(O) = p-~162 P(O/2I~; =log(2/e)) 

ik~2 

{ pt exp(27zin) } - 0/2t~ 

(5.23) 

(5.24) 

(5.25) 

where P is periodic in both variables with unit periods. The result (5.24) 
has to be inserted into Eqs. (5.9), (5.11). The integral is dominated by the 
scaling region 1 ~ -0/2l~ 4~ v(a)/le. In that region only the first two terms 
of Eq. (5.11) are leading. The resulting integral can be evaluated from 
(5.24). A slightly shorter method starts with noting that, by the same 
argument, 

I,,(e)=lim f (p'e2=i"e~)~ - V(O+ 2le)} (5.26) 
~ o  

Using (5.15) and (5.22), this may be written 

In(e) = lim (1 - pt eZi~s) F(s) (5.27) 
s ~ s  n 

From (5.17) one then obtains, using definition (5.23), 

I.(~) = (1 1 - p' exp-~-Jo-,,) \ a , /  
k ~  - - o o  

It has the form 

I,(e) = (21e) r J,(=log(21e)) 

where Jn is periodic with unit period. We note that the expression (5.28), 
without the infinite product, can be recovered by taking the limit e--+ 0 in 
Eq. (5.11). Indeed, inserting V, from (5.20) into (5.11) and afterward per- 
forming the integral (5.9), one obtains (5.28) without the infinite product. 

Equations (5.8), (5.28), and (5.21) consitute our final result. We recall 
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that 6 is defined in (5.4), v(6) in (2.24), c~ in (5.14), a ,  in (5.23), and ~ and 
f2 in (5.18), and c~ are related by (5.21) to the coefficients P4,k of the 
scaling behavior (5.20) of the Schmidt function at the special frequency. 
Note that the final result may be written 

H(co~) - H(co 2) = p~r162 Q(v(g)/le; qog(1/2/e)) (5.29) 

where Q(x, y) is periodic in x and y, with unit periods. Contrary to 
previous cases, the combination (5.29) cannot be rewritten in the form of 
an exponential times a periodic function of one variable. 

5.2. App l ica t ion  to Binary D is t r ibut ions  

Equation (5.29) is valid for any mass distribution for which co= 
sin{~z(/-k)/21} is a special frequency. We now investigate its predictions for 
binary cases and compare with numerical results. We shall show that a 
large proliferation of structure takes place: even when the Schmidt function 
is close to making one step per period, the IDS will make several steps. 

We first take the infinite-mass case, M = oe. Then it is easily seen that 
V(rr/l+O)=r~, V(~/I-O)=O, with r ,  given below (5.16). Combining this 
with the general equations (5.20) and (3.7), one derives P 4 , k  = 1 - -  r, and ck 
in (5.21) follows by putting ~ = f2 = 0, due to the fact that c~ = oo. Inserting 
this into (5.28), one finds / , ,(e)= (1 _ p ) p , - l .  Then, performing the sum 
(5.8), again using (3.7), one arrives at 

H(co~) - H(co 2) = (I - p)2 p/+~- l P tE~/12~-"/lJ (5.30) l _ p t  , M = o v  

Here it was also used that v(6) = 6 = n / l -  ae for M =  ~ .  So it can be seen 
that H(co 2) makes one step per period in this limit. A more direct com- 
putation of (5.30) is given in the Appendix. 

Next we take M finite and p small and employ the iteration method of 
previous sections to obtain the coefficients of the Schmidt function. At 
p = 0 the solution for V~ is still given by (4.21). In a first approximation we 
substitute this result into all terms with j C a  of the right-hand side of 
(2.22). One can get by iteration 

l 

Vs(q) ) = ~ ~n~=o rj]O(Rjz, R~zs(~o)- ~t+(fls)) 
j = l  
j C a  

(5.31) 
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and moreover one has 

sin +(ap)} 
sin �89 - ~s _ (aft)} 

=c~" sin �89176 ~+(afl)} (5.32) 
sin �89 ~ (aft)} 

where ~ + ( 6 ) = 6 + v ( 3 ) ,  with v defined in (2.24). Performing the sum 
(5.31), we obtain 

l 

E 
1'~ I 
i~r , ,  

where 

(5.33a) 

S((p)=2sinv(afl~)sin�89189 (5.33b) 

behaves as S(0 + (aft) + 0) _~ 0 for 0 --+ 0. Also, 

0j - RjS (~9 + (fl~)) = 0 + (fl,) + 2(j - 1)fl, (5.33c) 

Using (3.7), we derive from (5.33), by comparison with (5.20) and (5,21), 

l 

c k --- - ( In  r,+ 2rcik) -1 F(1 + ~ -  ikO) ~ o(r, e2mk) ~l~ 
/ = 1  
j ~ ' a  

(5.34) 

This has to be inserted in Eq. (5.28) in order to obtain In(e). Writing 

F(l +~-ikf2)=lnc~ j exp(--e--v) e-Y(r, e2~ik)Y dy 
--oo 

(5.35) 

and making the shift y--+ y-~log(a,S/2l~), we can first perform the sum 
using (3.7) and then the integral. The result becomes 

I , ( ~ ) = ( 1 - P  t) I ]  {(l-y)(1-ptexp(~-man)) -1} 
m ~ l  

x ~ ~. rjr~(p'e2~i") ~-'s`*j'/2" (5.36) 
j =  1 i =  - o o  
j ~ a  

Finally, this result has to be inserted into Eq. (5.8) for H(co2). We first set 
the infinite product equal to unity, which is its value for M = oo. We then 
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find a result, which may be written in the form (5.29), with Q replaced by 
Qo, where 

Oo(x, y) = p,+ 1 . . . .  ,x(1 _ p t )  ~ _/r ./,r _r m+~'-2''. . 
j , i ' =  1 m ,m '=  --~ 

.LJ' ~- a 

X / . ,  

It is clear that Qo(x, y) is separately periodic in its two variables. In 
the examples we consider, we will again take p small. Then, to leading 
order, only the values 1 <~j, j ' ~ < a - 1  are relevant. In particular, when 
a = 2, j = j ' =  1. It was already discussed in the closely related situation at 
M =  Mc (see Section 4,2) that V~.(~0) is then close to making one step per 
period, implying again that only S(~1) should matter. Nevertheless, the 
infinite sum (5.36) over m and rn' causes more structure in Qo- We now 
argue that in the case a = 2 this sum is often dominated by three terms. We 
shall present data for cases where c~-~S(~,l) is of order unity, whereas c~ -1 
ranges between 2 x 10 -2 and 10 -1. Therefore, negative values of m and m'  
will give very small contributions, and because p~< ra, also terms where 
m = 0  or rn'=O are small. The next terms are (rn, m ' ) - - ( 1 ,  1); (1,2) or 
(2, 1); (2, 2). These three terms are the dominant ones; the others have too 
many factors G- We conclude that, for such cases with a = 2, the leading 
step in the Schmidt function causes three leading steps in the IDS. In Figs. 5 
and 6 we present plots of ln [H(co~)-H(co2)] / ln  p/ versus v(6)/le in two 
typical examples. We have tested the agreement with Eqs. (5.29) and (5.30). 
It is satisfactory, although the values of e that we have used are not much 

Fig. 5. 

5 a  
_.c .Ec 

5 L E 

4.2 

3.4 

2.6 

1.8 

I , ~ T ~ r 

/ 
I-- / 

/ 
0,8 1.6 2.4 3.2 

V / ( I E )  

Plot of In AH/ln pl (where AH is the IDS difference) versus the variable v/le, for 
2 2 ~o T~o, and k=l ,  l=3 (a=2), M=3 (Me=2), p=0.1. 



420 N i e u w e n h u i z e n  a n d  Luck 

Fig. 6. 
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smaller than unity. It has been checked that the influence of the infinite 
product in (5.36) on H(o) 2) is negligible, mainly because ~-l  ,~ 1 and p < 1. 
Hence, we shall omit it. 

6. D I S C U S S I O N  

We have introduced a powerful method to describe the periodic 
amplitudes of the Lifshitz (exponential) singularities in the integrated den- 
sity of states (IDS) of harmonic chains with random masses. These 
singularities occur near the high-frequency band edge and near "special fre- 
quencies." The latter exist if the mass gap between the lightest particle 
(mass m_ ~ 1) and the one-but-lightest particle (mass M) is large enough. 
It occurs first when M =  2. The special frequencies are denumerable and 
accumulate at the band edge. 

Special frequencies have the property that they are not an eigenfre- 
quency of any chain of the ensemble. (13'14) This point is responsible for the 
very small probability (essential singularity) of finding an eigenfrequency 
close to a special frequency. In Refs. 5 and 6 it is explained that such eigen- 
frequencies are related to eigenfunctions that "live" on islands that are large 
repetitions of a certain unit group of light and heavy masses. In the present 
paper we employ this notion and solve the eigenfrequencies of the islands 
given the boundary conditions on the left and right ends. Since these boun- 
dary conditions are determined by the semi-infinite parts of the chain to 
the left and to the right of the island, their distribution is expressed in 
terms of the distribution function of Dyson and Schmidt. The latter 
function is a Cantor function at  the special frequency. It is shown that its 
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scaling behavior near relevant points determines the IDS for frequencies 
close to the special frequency. 

We have also applied our general results to binary mass distributions. 
We introduce a method for explaining the detailed structure of the IDS 
near special frequencies for small concentrations p of the light masses. The 
main point is that when p ~ 1, the semi-infinite side parts of the central 
island are dominated by heavy masses. Corrections due to insertion of one, 
two, three, etc., light masses can successively be calculated in a small-p 
expansion. It is then found that this method predicts "steps" in H(co2), 
which become the smaller, the more times the iteration is pursued. 
Numerical calculations with reasonable but not extremely high resolution 
confirm this behavior. 

The occurrence of "steps" in H(co 2) for small p is not unexpected. In a 
previous paper (3) we extended an argument of Halperin (15) concerning the 
behavior of H(o9 2) near the eigenmodes of a small island containing light 
(and possibly also heavy) masses, emerging from a sea of only heavy 
masses. The result of Ref. 3 reads 

H(co~++_e)-H(oa~)=~2~R+_(lne/ln#), E,~O (6.1) 

where R+_ are two periodic functions with unit periods. The exponent c~ = 
l n ( 1 -  p)/lnluo[ and the scale # =  Uo 2 are determined by 

Uo = �89 2 - 1 + (�88 4 - Me02) 1/2 (6.2) 

For small p, ~ ~- -p / ln  lUol goes to zero, so that the structures in H(co z) 
look like "steps." Our approach of the excitations in the neighborhood of 
special frequencies also rests on the picture of a central island containing 
several light (and possibly also heavy) masses in the middle of a sea of 
heavy masses. This implies that all structure present in H(co 2) will satisfy 
the scaling behavior (6.1). But when p is small and the resolution is not 
extremely high, it looks very much like a function making steps. 

It was already discussed in Refs. 5 and 6 that four different cases have 
to be distinguished: 

(i) Behavior near the band edge (~O~'COma,) (Section 3). This is the 
case originally considered by Lifshitz. The central island consists of light 
masses only. Our final result for several mass distributions is given by Eqs. 
(3.8), (3.14), and (3.12). In binary cases this has been worked out to give 
(3.21). 

(ii) To the right of a special frequency (Section4.1). The central 
island is a repetition of units of one heavy and l - 1  light masses (HL t-  1). 
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The result for general cases is given by (4.14), (4.19), and (4.18). Its 
application to binary distributions is given in (4.26). 

(iii) To the left of a special frequency at critical mass ratio. The cen- 
tral island is a sequence of units HL a- 1, where a (1 ~< a ~< l -  1) is defined 
by ( l - k ) a =  1 (mod l), Our general result is given by (4.30), (4.33). The 
application to binary situations is discussed afterward. An application is 
given in (4.37). 

(iv) To the left of a special frequency at general mass ratio (Sec- 
tion 5.1 ). The central island consists of light particles only. This is the most 
complicated case. The general result follows from (5.8), (5.28), (5.21), and 
(5.20). Application to binary distributions is discussed in Section 5.2; see 
Eqs. (5.29) and (5.37) for specific results. 

The first three cases are very similar. One has a decay like AH(~o 2) 
exp( -cons t .  IAco2l 1/2), with a periodic prefactor. In case (iv) the behavior 
is A H ~ e x p ( - c o n s t .  ]Ae)2]-l), multiplied by a power and a more com- 
plicated amplitude; see (5.29). 

In cases (ii) and (iii) we had to restrict ourselves to the limit p ~ 1. It 
would be interesting to extend our results to general values of p. One might 
wonder whether the prefactor of the leading exponential decay still involves 
a periodic function of one variable, such as in Eqs. (4.14) and (4.30), or 
that it becomes more complicated, for instance, as in Eq. (5.29). 

Another point of interest is to extend the present method to derive the 
Lifshitz singularities in the wavenumber-dependent spectral density, 
starting from the equations of Halperin. (151 We discuss this topic in Ref. 10, 
starting from a different approach. 

A P P E N D I X .  H ( m  z) IN THE L I M I T M ~  

When M = oe the infinite masses break up the chain into independent 
segments. This was noted first by Domb eta/. (91 Say that there are infinitely 
heavy masses at sites 0 and n. Then the eigenmodes have the form a k =- 
sn k/~, with ~ = rc(n - m)/n, with 1 ~< m ~< n - 1. The eigenfrequency is ~o --- 
2 sin(�89 The probability for this succession to occur is (1 -p)2p, ,  1. Hence 
the IDS is 

H(co21 = (1 - P l +  ~ ( 1 - p 1 2 p " - ~ O ( ~ - r c + ~ m / n l  (11t 
n ~ l  m = l  

The first term represents the contribution of the ~o = 0  mode of the 
infinitely heavy masses. It can be checked that (AI) is normalized to unity. 

First we calculate H(~o2), where ~o s - 2  sin(�89 /?s =- ( l - k )n / l ,  with k 
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and l integer and mutual prime. Note that all eigenfrequencies mentioned 
above occur with finite probability ( 1 - p ) 2 f - 1 / ( 1 - p n ) ,  where the 
denominator accounts for the fact that islands HL~-tH, HL2"-~H, 
HL 3n- 1H, etc., all give a same frequency. Therefore one has to be more 
exact in what is meant by H(co2). We shall calculate 

H ( c o ~ - 0 ) =  1 - ~, (1 -p )2  p"-lO - 0 (A2) 
n = 2  r n = I  n 

We define b(n), 1 <~ b(n)~ l -  1, by 

nk / l :  [nk/l] + b(n)/l 

It follows that 

(A3) 

H ( a ) ~ - 0 ) = l - ( 1 - p ) 2  ~, [nk/l]p .... ' (A4) 
n = 2 

The same result is valid at the special frequency when M is finite but larger 
than some critical value M,.. Next we set fl = fl.~- e and calculate 

I1 - -  1 

H({o2--O)--H(co2)= ~, ~ (1--p)Zp"-~I .... (A5) 
n = 2  m = l  

with/,,,, = 1 if k/l < m/n < k/l + e/n and zero otherwise. Performing the sum 
over m, we have 

I ~[ne + nk]  - I-n-~-l} (A6, 
~, ( 1 - - p ) 2 p ' -  [U ~z l J H(~o~-O)- H((o2)= 

n: I 

The term with n : 1 could be added because it vanishes anyhow. Decom- 
posing 

n=nl l+n2,  l<~n2<~l-1; 0 ~ n l <  oo (A7) 

we find, using (A3), 
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This does not  vanish if n > rc{ l -b(n2)} / le .  In the l ead ing-order  terms the 
degeneracy factor  (A8) equals  uni ty:  

H ( ~  - 0) - ~(~o 2) 

l - - 1  ~.a  
--- ~ (1 - p)2p,,ll+,,2- 1 

n2 = 1 n 1 = l + [ T r { l - - b ( n 2 ) } / 1 2 e - - n 2 / l ]  

l - -1  
1 - -  p l-- 1 Dl[r~{I b(n2)}/12e-n2/l] 

- l _ ~ T P  "2+ 2 (A9) 
n 2 ~  1 

By far the largest  con t r ibu t ion  comes when b(n2)= l - 1 ,  which happens  
when n2 = a, with a defined by  ( I -  k )a  = 1 (rood l): 

H(co~ _ 0) _ H(co2) = (1 _ p t ) - l ( 1  _p)pl+~-lpt t~/ t2~-~/~ ( A I 0 )  

Final ly ,  we recall  that  H is d i scon t inuous  at  s  

H(og~z + 0 ) -  H(O)s2- 0 ) =  ( 1 - p ) Z p t - i / ( 1 - p t )  ( A l l )  
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